Magnesium 2p binding energy and modified Auger parameter values are shown in Table 1. It is worth noting that accounting for the difference between charge referencing procedures is vital for correct analysis of magnesium compounds (especially for MgO and Mg(OH)2) [1]. For MgO, the peak position for the Mg 2p transition is 49.4 eV when charge referenced to adventitious carbon at 284.8 eV, and 50.8 when referenced to the Mg 2p metal peak at 49.73 eV (or grounded). This has led to a lot of confusion regarding the Mg 2p peak positions to use for analysis. The results from a consistently analyzed dataset are shown in Table 1 together with compiled literature values [1]. Since the chemical sensitivity of the Mg 2p transition is low for magnesium the Auger parameter and anion signals are particularly important to consider for improved speciation.
The anion fitting parameters—binding energy, peak width, and line shape—obtained from fitting reference samples are reported in Table 2 from a consistently analyzed data set [1]. The O 1s signal can be used to separate MgO and Mg(OH)2 despite their overlapping Mg 2p signals. The O 1s peak position of Mg(OH)2 is +1.6 eV with respect to the main lattice peak of MgO. However, the peak position for Mg(OH)2 can overlap with other environments such as the MgO defective oxide and adventitious carbon, which may need to be accounted for in the analysis.